Gas Transport in Glassy Polymers: Prediction of Diffusional Time Lag

نویسندگان

  • Matteo Minelli
  • Giulio C. Sarti
چکیده

The transport of gases in glassy polymeric membranes has been analyzed by means of a fundamental approach based on the nonequilibrium thermodynamic model for glassy polymers (NET-GP) that considers the penetrant chemical potential gradient as the actual driving force of the diffusional process. The diffusivity of a penetrant is thus described as the product of a purely kinetic quantity, the penetrant mobility, and a thermodynamic factor, accounting for the chemical potential dependence on its concentration in the polymer. The NET-GP approach, and the nonequilibrium lattice fluid (NELF) model in particular, describes the thermodynamic behavior of penetrant/polymer mixtures in the glassy state, at each pressure or composition. Moreover, the mobility is considered to follow a simple exponential dependence on penetrant concentration, as typically observed experimentally, using only two adjustable parameters, the infinite dilution penetrant mobility L10 and the plasticization factor β, both determined from the analysis of the dependence of steady state permeability on upstream pressure. The available literature data of diffusional time lag as a function of penetrant upstream pressure has been reviewed and compared with model predictions, obtained after the values of the two model parameters (L10 and β), have been conveniently determined from steady state permeability data. The model is shown to be able to describe very accurately the experimental time lag behaviors for all penetrant/polymer pairs inspected, including those presenting an increasing permeability with increasing upstream pressure. The model is thus more appropriate than the one based on Dual Mode Sorption, which usually provides an unsatisfactory description of time lag and required an ad hoc modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes

Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are ...

متن کامل

Formulation Development and Evaluation of Gastro Retentive Floating Drug Delivery System for Novel Fluoroquinolone using Natural and Semisynthetic Polymers

The purpose of present research work is to develop gastro retentive formulation for Moxifloxacin using various release retardants. Moxifloxacin, novel synthetic fluoro quinolone, antibacterial agent. Floating tablets of Moxifloxacin. HCl were prepared using variable amounts of HPMCK4M, HPMCK15M and HPMCK100M with effervescent mixtures by direct compression technique. Totally 9 formulations were...

متن کامل

Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures.

Two dimensionless parameters, the diffusional Deborah number, De, and the swelling interface number, Sw, were used as indicators of solvent and solute transport behavior in swellable hydrogel systems. Polymer relaxation and concentration-dependent diffusion led to dynamically swelling polymers which displayed Fickian, Case II, or anomalous transport behavior. Experimental systems studied includ...

متن کامل

Ending aging in super glassy polymer membranes.

Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This...

متن کامل

On the Importance of Chain Reptation in Models of Dissolution of Glassy Polymers

Polymer dissolution was described by chain reptation incorporated into penetrant transport. The penetrant concentration field was divided into three regimes which delineate three different transport processes. Solvent penetration through the polymer was modeled to occur as a consequence of a diffusional flux and an osmotic pressure contribution. Species momentum balances were written that coupl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018